nut-debian/drivers/powercom.c
2022-07-10 09:23:45 +02:00

1215 lines
41 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* powercom.c - model specific routines for following units:
* -Trust 425/625
* -Powercom
* -Advice Partner/King PR750
* See http://www.advice.co.il/product/inter/ups.html for its specifications.
* This model is based on PowerCom (www.powercom.com) models.
* -Socomec Sicon Egys 420
* -OptiUPS VS 575C
*
* Copyrights:
* (C) 2015 Arnaud Quette <ArnaudQuette@Eaton.com>
* (C) 2013 Florian Bruhin <nut@the-compiler.org>
* (C) 2002 Simon Rozman <simon@rozman.net>
* (C) 1999 Peter Bieringer <pb@bieringer.de>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* rev 0.7: Alexey Sidorov <alexsid@altlinux.org>
* - add Powercom's Black Knight Pro model support ( BNT-400/500/600/800/801/1000/1200/1500/2000AP 220-240V )
*
* rev 0.8: Alexey Sidorov <alexsid@altlinux.org>
* - add Powercom's King Pro model support ( KIN-425/525/625/800/1000/1200/1500/1600/2200/3000/5000AP[-RM] 100-120,200-240 V)
*
* rev 0.9: Alexey Sidorov <alexsid@altlinux.org>
* - add Powercom's Imperial model support ( IMP-xxxAP, IMD-xxxAP )
*
* rev 0.10: Alexey Sidorov <alexsid@altlinux.org>
* - fix wrong detection KIN-2200AP
* - use ser_set_dtr/ser_set_rts
*
* rev 0.11: Alexey Sidorov <alexsid@altlinux.org>
* - move variables from .h to .c file (thanks Michael Tokarev for bugreport)
* - fix string comparison (thanks Michael Tokarev for bugreport & Charles Lepple for patch)
* - added BNT-other, for BNT 100-120V models (I havn't specs for it)
*
* Tested on: BNT-1200AP
*
* Known bugs:
* - strange battery level on BNT1200AP in online mode( & may be on other models)
* - i don't know how connect to IMP|IMD USB
* - i havn't specs for BNT 100-120V models. Add BNT-other type for it
*
* rev 0.13: Keven Ates <atescomp@gmail.com>
* - Modified functions to work for BNT-other 100-120V models.
* - Modified BNT-other type defaults to work for the BNT 1500A 120VA model.
* - Documented the type[] values purpose in a condensed format.
* - BNT-other can be used to perform a complete user override of values for all PowerCom models, detected or not.
*
* Tested on: BNT-1500A
*
* rev 0.14: Florian Bruhin (The Compiler) <nut@the-compiler.org>
* - Added support for OptiUPS VS 575C
* This probably also works with others, but I don't have their model numbers.
*
* rev 0.15: VSE NN <metanoite@rambler.ru>
* - Fixed UPS type assignment for Powercom Imperial USB series manufactured since 2009.
*
* Tested on: IMP-625AP
*
* rev 0.16: Arnaud Quette
* - Fixed the processing of input/output voltages for KIN models
* (https://github.com/networkupstools/nut/issues/187)
*
* rev 0.18: Rouben Tchakhmakhtchian
* - Added nobt flag to config that skips UPS battery check on startup/init
* (https://github.com/networkupstools/nut/issues/546)
*
*/
#include "main.h"
#include "serial.h"
#include "powercom.h"
#include "math.h"
#define DRIVER_NAME "PowerCom protocol UPS driver"
#define DRIVER_VERSION "0.19"
/* driver description structure */
upsdrv_info_t upsdrv_info = {
DRIVER_NAME,
DRIVER_VERSION,
"Simon Rozman <simon@rozman.net>\n" \
"Peter Bieringer <pb@bieringer.de>\n" \
"Alexey Sidorov <alexsid@altlinux.org>\n" \
"Florian Bruhin <nut@the-compiler.org>\n" \
"Arnaud Quette <ArnaudQuette@Eaton.com>\n" \
"Rouben Tchakhmakhtchian <rouben@rouben.net>",
DRV_STABLE,
{ NULL }
};
#define NUM_OF_SUBTYPES (sizeof (types) / sizeof (*types))
/* general constants */
enum general {
MAX_NUM_OF_BYTES_FROM_UPS = 16
};
/* variables used by module */
static unsigned char raw_data[MAX_NUM_OF_BYTES_FROM_UPS]; /* raw data reveived from UPS */
static unsigned int linevoltage = 230U; /* line voltage, can be defined via command line option */
static const char *manufacturer = "PowerCom";
static const char *modelname = "Unknown";
static const char *serialnumber = "Unknown";
static unsigned int type = 0;
/* forward declaration of functions used to setup flow control */
static void dtr0rts1 (void);
static void no_flow_control (void);
/* struct defining types
* ---------------------
* See powercom.h for detailed information and functions.
*
* The following type defaults use this definition:
*
* "TypeID",
* ByteCount,
* { "FlowControlString", FlowControlFuncPtr },
* { { ValidationIndex, ValidationValue },
* { ValidationIndex, ValidationValue },
* { ValidationIndex, ValidationValue } },
* { { DelayShutdownMinutes, DelayShutdownSeconds },
* UseMinutesChar'y''n' },
* { FrequencyFactor, FrequencyConstant },
* { OfflineLoadFactor, OfflineLoadConstant,
* OnlineLoadFactor, OnlineLoadConstant },
* { OfflineBatteryFactor, OfflineLoad%Factor, OfflineBatteryConstant,
* OnlineBatteryFactor, OnlineBatteryConstant },
* { 240VoltageFactor, 240VoltageConstant,
* 120VoltageFactor, 120VoltageConstant },
*/
static struct type types[] = {
{
"Trust",
11,
{ "dtr0rts1", dtr0rts1 },
{ { 5U, 0U }, { 7U, 0U }, { 8U, 0U } },
{ { 0U, 10U }, 'n' },
{ 0.00020997, 0.00020928 },
{ 6.1343, -0.3808, 4.3110, 0.1811 },
{ 5.0000, 0.3268, -825.00, 4.5639, -835.82 },
{ 1.9216, -0.0977, 0.9545, 0.0000 },
},
{
"Egys",
16,
{ "no_flow_control", no_flow_control },
{ { 5U, 0x80U }, { 7U, 0U }, { 8U, 0U } },
{ { 0U, 10U }, 'n' },
{ 0.00020997, 0.00020928 },
{ 6.1343, -0.3808, 1.3333, 0.6667 },
{ 5.0000, 0.3268, -825.00, 2.2105, -355.37 },
{ 1.9216, -0.0977, 0.9545, 0.0000 },
},
{
"KP625AP",
16,
{ "dtr0rts1", dtr0rts1 },
{ { 5U, 0x80U }, { 7U, 0U }, { 8U, 0U } },
{ { 0U, 10U }, 'n' },
{ 0.00020997, 0.00020928 },
{ 6.1343, -0.3808, 4.3110, 0.1811 },
{ 5.0000, 0.3268, -825.00, 4.5639, -835.82 },
{ 1.9216, -0.0977, 0.9545, 0.0000 },
},
{
"IMP",
16,
{ "no_flow_control", no_flow_control },
{ { 5U, 0xFFU }, { 7U, 0U }, { 8U, 0U } },
{ { 1U, 30U }, 'y' },
{ 0.00020997, 0.00020928 },
{ 6.1343, -0.3808, 4.3110, 0.1811 },
{ 5.0000, 0.3268, -825.00, 4.5639, -835.82 },
{ 1.9216, -0.0977, 0.9545, 0.0000 },
},
{
"KIN",
16,
{ "no_flow_control", no_flow_control },
{ { 11U, 0x4bU }, { 8U, 0U }, { 8U, 0U } },
{ { 1U, 30U }, 'y' },
{ 0.00020997, 0.0 },
{ 6.1343, -0.3808, 1.075, 0.1811 },
{ 5.0000, 0.3268, -825.00, 0.46511, 0 },
{ 1.9216, -0.0977, 0.82857, 0.0000 },
},
{
"BNT",
16,
{ "no_flow_control", no_flow_control },
{ { 11U, 0x42U }, { 8U, 0U }, { 8U, 0U } },
{ { 1U, 30U }, 'y' },
{ 0.00020803, 0.0 },
{ 1.4474, 0.0, 0.8594, 0.0 },
{ 5.0000, 0.3268, -825.00, 0.46511, 0 },
{ 1.9216, -0.0977, 0.82857, 0.0000 },
},
{
"BNT-other",
16,
{ "no_flow_control", no_flow_control },
{ { 8U, 0U }, { 8U, 0U }, { 8U, 0U } },
{ { 1U, 30U }, 'y' },
{ 0.00027778, 0.0000 },
{ 1.0000, 0.0000, 1.0000, 0.0000 },
{ 1.0000, 0.0000, 0.0000, 1.0000, 0.0000 },
{ 2.0000, 0.0000, 2.0000, 0.0000 },
},
{
"OPTI",
16,
{ "no_flow_control", no_flow_control },
{ { 5U, 0xFFU }, { 7U, 0U }, { 8U, 0U } },
{ { 1U, 30U }, 'y' },
{ 0.0000, 0.0000 },
{ 1.0000, 0.0000, 1.0000, 0.0000 },
{ 1.0000, 0.0000, 0.0000, 1.0000, 0.0000 },
{ 2.0000, 0.0000, 2.0000, 0.0000 },
},
};
/* values for sending to UPS */
enum commands {
SEND_DATA = '\x01',
BATTERY_TEST = '\x03',
WAKEUP_TIME = '\x04',
RESTART = '\xb9',
SHUTDOWN = '\xba',
COUNTER = '\xbc'
};
/* location of data in received string */
enum data {
UPS_LOAD = 0U,
BATTERY_CHARGE = 1U,
INPUT_VOLTAGE = 2U,
OUTPUT_VOLTAGE = 3U,
INPUT_FREQUENCY = 4U,
UPSVERSION = 5U,
OUTPUT_FREQUENCY = 6U,
STATUS_A = 9U,
STATUS_B = 10U,
MODELNAME = 11U,
MODELNUMBER = 12U
};
/* status bits */
enum status {
SUMMARY = 0U,
MAINS_FAILURE = 1U,
ONLINE = 1U,
FAULT = 1U,
LOW_BAT = 2U,
BAD_BAT = 2U,
TEST = 4U,
AVR_ON = 8U,
AVR_MODE = 16U,
SD_COUNTER = 16U,
OVERLOAD = 32U,
SHED_COUNTER = 32U,
DIS_NOLOAD = 64U,
SD_DISPLAY = 128U,
OFF = 128U
};
static unsigned int voltages[] = {100,110,115,120,0,0,0,200,220,230,240,0,0,0,0,0};
static unsigned int BNTmodels[] = {0,400,500,600,800,801,1000,1200,1500,2000,0,0,0,0,0,0};
static unsigned int KINmodels[] = {0,425,500,525,625,800,1000,1200,1500,1600,2200,2200,2500,3000,5000,0};
static unsigned int IMPmodels[] = {0,425,525,625,825,1025,1200,1500,2000,0,0,0,0,0,0,0};
static unsigned int OPTImodels[] = {0,0,0,575,0,0,0,0,0,0,0,0,0,0,0,0};
/*
* local used functions
*/
static void shutdown_halt(void)
__attribute__((noreturn));
static void shutdown_halt(void)
{
ser_send_char (upsfd, (unsigned char)SHUTDOWN);
if (types[type].shutdown_arguments.minutesShouldBeUsed != 'n')
ser_send_char (upsfd, types[type].shutdown_arguments.delay[0]);
ser_send_char (upsfd, types[type].shutdown_arguments.delay[1]);
upslogx(LOG_INFO, "Shutdown (stayoff) initiated.");
exit (0);
}
static void shutdown_ret(void)
__attribute__((noreturn));
static void shutdown_ret(void)
{
ser_send_char (upsfd, (unsigned char)RESTART);
ser_send_char (upsfd, (unsigned char)COUNTER);
if (types[type].shutdown_arguments.minutesShouldBeUsed != 'n')
ser_send_char (upsfd, types[type].shutdown_arguments.delay[0]);
ser_send_char (upsfd, types[type].shutdown_arguments.delay[1]);
upslogx(LOG_INFO, "Shutdown (return) initiated.");
exit (0);
}
/* registered instant commands */
static int instcmd (const char *cmdname, const char *extra)
{
if (!strcasecmp(cmdname, "test.battery.start")) {
ser_send_char (upsfd, BATTERY_TEST);
return STAT_INSTCMD_HANDLED;
}
if (!strcasecmp(cmdname, "shutdown.return")) {
/* NOTE: In this context, "return" is UPS behavior after the
* wall-power gets restored. The routine exits the driver anyway.
*/
shutdown_ret();
#ifndef HAVE___ATTRIBUTE__NORETURN
return STAT_INSTCMD_HANDLED;
#endif
}
if (!strcasecmp(cmdname, "shutdown.stayoff")) {
shutdown_halt();
#ifndef HAVE___ATTRIBUTE__NORETURN
return STAT_INSTCMD_HANDLED;
#endif
}
upslogx(LOG_NOTICE, "instcmd: unknown command [%s] [%s]", cmdname, extra);
return STAT_INSTCMD_UNKNOWN;
}
/* set DTR and RTS lines on a serial port to supply a passive
* serial interface: DTR to 0 (-V), RTS to 1 (+V)
*/
static void dtr0rts1 (void)
{
ser_set_dtr(upsfd, 0);
ser_set_rts(upsfd, 1);
upsdebugx(2, "DTR => 0, RTS => 1");
}
/* clear any flow control */
static void no_flow_control (void)
{
struct termios tio;
tcgetattr (upsfd, &tio);
tio.c_iflag &= ~ ((tcflag_t)IXON | (tcflag_t)IXOFF);
tio.c_cc[VSTART] = _POSIX_VDISABLE;
tio.c_cc[VSTOP] = _POSIX_VDISABLE;
upsdebugx(2, "Flow control disable");
/* disable any flow control */
tcsetattr(upsfd, TCSANOW, &tio);
}
/* sane check for returned buffer */
static int validate_raw_data (void)
{
int i = 0,
num_of_tests =
sizeof types[0].validation / sizeof types[0].validation[0];
for (i = 0;
i < num_of_tests &&
raw_data[
types[type].validation[i].index_of_byte] ==
types[type].validation[i].required_value;
i++) ;
return (i < num_of_tests) ? 1 : 0;
}
/* get info from ups */
static int ups_getinfo(void)
{
size_t i;
ssize_t c;
/* send trigger char to UPS */
if (ser_send_char (upsfd, SEND_DATA) != 1) {
upslogx(LOG_NOTICE, "writing error");
dstate_datastale();
return 0;
} else {
upsdebugx(5, "Num of bytes requested for reading from UPS: %d", types[type].num_of_bytes_from_ups);
/* Note: num_of_bytes_from_ups is (unsigned char) so comparable
* to ssize_t without more range checks */
c = ser_get_buf_len(upsfd, raw_data,
types[type].num_of_bytes_from_ups, 3, 0);
if (c != (ssize_t)types[type].num_of_bytes_from_ups) {
upslogx(LOG_NOTICE, "data receiving error (%zd instead of %d bytes)", c, types[type].num_of_bytes_from_ups);
dstate_datastale();
return 0;
} else
upsdebugx(5, "Num of bytes received from UPS: %zd", c);
}
/* optional dump of raw data */
if (nut_debug_level > 4) {
/* FIXME: use upsdebug_hex() ? */
printf("Raw data from UPS:\n");
for (i = 0; i < types[type].num_of_bytes_from_ups; i++) {
printf("%2zu 0x%02x (%c)\n", i, raw_data[i], raw_data[i]>=0x20 ? raw_data[i] : ' ');
}
}
/* validate raw data for correctness */
if (validate_raw_data() != 0) {
upslogx(LOG_NOTICE, "data receiving error (validation check)");
dstate_datastale();
return 0;
}
return 1;
}
static float input_voltage(void)
{
unsigned int model;
float tmp=0.0;
if ( !strcmp(types[type].name, "BNT") && raw_data[MODELNUMBER]%16 > 7 ) {
tmp=2.2*raw_data[INPUT_VOLTAGE]-24;
} else if ( !strcmp(types[type].name, "KIN")) {
model=KINmodels[raw_data[MODELNUMBER]/16];
/* Process input voltage, according to line voltage and model rating */
if (linevoltage < 200) {
if (model <= 625) {
tmp = 0.89 * raw_data[INPUT_VOLTAGE] + 6.18;
} else if ((model >= 800) && (model < 2000)) {
tmp = 1.61 * raw_data[INPUT_VOLTAGE] / 2.0;
} else {
tmp = 1.625 * raw_data[INPUT_VOLTAGE] / 2.0;
}
}
if (linevoltage >= 200) {
if (model <= 625) {
tmp = 1.79 * raw_data[INPUT_VOLTAGE] + 3.35;
} else if ((model >= 800) && (model < 2000)) {
tmp = 1.61 * raw_data[INPUT_VOLTAGE];
} else {
tmp = 1.625 * raw_data[INPUT_VOLTAGE];
}
}
} else if ( !strcmp(types[type].name, "IMP") || !strcmp(types[type].name, "OPTI")) {
tmp=raw_data[INPUT_VOLTAGE]*2.0;
} else {
tmp=linevoltage >= 220 ?
types[type].voltage[0] * raw_data[INPUT_VOLTAGE] + types[type].voltage[1] :
types[type].voltage[2] * raw_data[INPUT_VOLTAGE] + types[type].voltage[3];
}
if (tmp<0) tmp=0.0;
return tmp;
}
static float output_voltage(void)
{
float tmp,rdatax,rdatay,rdataz,boostdata;
unsigned int statINV = 0,statAVR = 0,statAVRMode = 0,model,t;
static float datax1[]={0,1.0,1.0,1.0,1.0,0.945,0.945,0.945,0.127,0.127,0.945,0.945,0.945,0.256};
static float datay1[]={0,0.85,0.85,0.85,0.88,0.9,0.9,0.9,6.6,6.6,0.87,0.87,0.87,3.29};
static float dataz1[]={0,1.03,0.78,0.78,0.72,0.55,0.55,0.55,0.5,0.5,0.43,0.43,0.43,0.3};
static float datax2[]={0,1.0,1.0,1.0,1.0,1.89,1.89,1.89,0.127,0.127,1.89,1.89,1.89,0.256};
static float datay2[]={0,1.73,1.74,1.74,1.77,0.9,0.9,0.9,13.204,13.204,0.88,0.88,0.88,6.645};
static float dataz2[]={0,1.15,0.9,0.9,0.75,1.1,1.1,1.1,0.8,0.8,0.86,0.86,0.86,0.7};
if ( !strcmp(types[type].name, "BNT") || !strcmp(types[type].name, "KIN")) {
statINV=raw_data[STATUS_A] & ONLINE;
statAVR=raw_data[STATUS_A] & AVR_ON;
statAVRMode=raw_data[STATUS_A] & AVR_MODE;
}
if ( !strcmp(types[type].name, "BNT") && raw_data[MODELNUMBER]%16 > 7 ) {
if (statINV==0) {
if (statAVR==0){
tmp=2.2*raw_data[OUTPUT_VOLTAGE]-24;
} else {
if (statAVRMode > 0)
tmp=(2.2*raw_data[OUTPUT_VOLTAGE]-24)*31/27;
else
tmp=(2.22*raw_data[OUTPUT_VOLTAGE]-24)*27/31;
}
} else {
t=raw_data[OUTPUT_FREQUENCY]/2;
tmp=(1.965*raw_data[15])*(1.965*raw_data[15])*(t-raw_data[OUTPUT_VOLTAGE])/t;
if (tmp>0)
tmp=sqrt(tmp);
else
tmp=0.0;
}
} else if ( !strcmp(types[type].name, "KIN")) {
model=KINmodels[raw_data[MODELNUMBER]/16];
if (statINV == 0) {
if (statAVR == 0) {
/* FIXME: miss test "if (iUPS == 1) {" */
if (linevoltage >= 200) {
if (model <= 625)
tmp = 1.79*raw_data[OUTPUT_VOLTAGE] + 3.35;
else if (model<2000)
tmp = 1.61*raw_data[OUTPUT_VOLTAGE];
else
tmp = 1.625*raw_data[OUTPUT_VOLTAGE];
} else {
if (model <= 625)
tmp = 0.89 * raw_data[OUTPUT_VOLTAGE] + 6.18;
else if (model<2000)
tmp = 1.61 * raw_data[OUTPUT_VOLTAGE] / 2.0;
else
tmp = 1.625 * raw_data[OUTPUT_VOLTAGE] / 2.0;
}
}
else if (statAVR == 1) {
/* FIXME: miss test "if ((iUPS == 1) || (iUPS == 13)) {" */
if (linevoltage >= 200) {
if (model <= 525)
tmp = 2.07 * raw_data[OUTPUT_VOLTAGE];
else if (model == 625)
tmp = 2.07 * raw_data[OUTPUT_VOLTAGE]+5;
else if (model < 2000)
tmp = 1.87 * raw_data[OUTPUT_VOLTAGE];
else
tmp = 1.87 * raw_data[OUTPUT_VOLTAGE];
} else {
if (model <= 625)
tmp = 2.158 * raw_data[OUTPUT_VOLTAGE] / 2.0;
else if (model < 2000)
tmp = 1.842 * raw_data[OUTPUT_VOLTAGE] / 2.0;
else
tmp = 1.875 * raw_data[OUTPUT_VOLTAGE] / 2.0;
}
} else {
/* FIXME: miss test "if ((iUPS == 1) || (iUPS == 13)) {" */
if (linevoltage >= 200) {
if (model == 625)
tmp = 1.571 * raw_data[OUTPUT_VOLTAGE];
else if (model < 2000)
tmp = 1.37 * raw_data[OUTPUT_VOLTAGE];
else
tmp = 1.4 * raw_data[OUTPUT_VOLTAGE];
} else {
if (model <= 625)
tmp = 1.635 * raw_data[OUTPUT_VOLTAGE] / 2.0;
else if (model < 2000)
tmp = 1.392 * raw_data[OUTPUT_VOLTAGE] / 2.0;
else
tmp = 1.392 * raw_data[OUTPUT_VOLTAGE] / 2.0;
}
}
} else {
/* FIXME: miss test "if ((iUPS == 1) && (T != 0))" */
if (linevoltage < 200) {
rdatax = datax1[raw_data[MODELNUMBER]/16];
rdatay = datay1[raw_data[MODELNUMBER]/16];
rdataz = dataz1[raw_data[MODELNUMBER]/16];
} else {
rdatax = datax2[raw_data[MODELNUMBER]/16];
rdatay = datay2[raw_data[MODELNUMBER]/16];
rdataz = dataz2[raw_data[MODELNUMBER]/16+1];
}
boostdata = 1.0 + statAVR * 20.0 / 135.0;
t = raw_data[OUTPUT_FREQUENCY]/2;
tmp = 0;
if (model > 625){
tmp=(raw_data[BATTERY_CHARGE]*rdatax)*(raw_data[BATTERY_CHARGE]*rdatax)*
(t-raw_data[OUTPUT_VOLTAGE])/t;
if (tmp>0)
/* Casts below try to avoid potential multiplication overflow */
tmp=(float)( (double)sqrt(tmp)*rdatay*boostdata -
(double)raw_data[UPS_LOAD]*rdataz*boostdata );
} else {
tmp=(raw_data[BATTERY_CHARGE]*rdatax-raw_data[UPS_LOAD]*rdataz)*
(raw_data[BATTERY_CHARGE]*rdatax-raw_data[UPS_LOAD]*rdataz)*
(t-raw_data[OUTPUT_VOLTAGE])/t;
if (tmp>0)
tmp=sqrt(tmp)*rdatay;
}
/* FIXME: may miss a last processing with ErrorVal = 5 | 10 */
}
} else if ( !strcmp(types[type].name, "IMP") || !strcmp(types[type].name, "OPTI")) {
tmp=raw_data[OUTPUT_VOLTAGE]*2.0;
} else {
tmp= linevoltage >= 220 ?
types[type].voltage[0] * raw_data[OUTPUT_VOLTAGE] +
types[type].voltage[1] :
types[type].voltage[2] * raw_data[OUTPUT_VOLTAGE] +
types[type].voltage[3];
}
if (tmp<0) tmp=0.0;
return tmp;
}
static float input_freq(void)
{
if ( !strcmp(types[type].name, "BNT") || !strcmp(types[type].name, "KIN"))
return 4807.0/raw_data[INPUT_FREQUENCY];
else if ( !strcmp(types[type].name, "IMP") || !strcmp(types[type].name, "OPTI"))
return raw_data[INPUT_FREQUENCY];
return raw_data[INPUT_FREQUENCY] ?
1.0 / (types[type].freq[0] *
raw_data[INPUT_FREQUENCY] +
types[type].freq[1]) : 0;
}
static float output_freq(void)
{
if ( !strcmp(types[type].name, "BNT") || !strcmp(types[type].name, "KIN"))
return 4807.0/raw_data[OUTPUT_FREQUENCY];
else if ( !strcmp(types[type].name, "IMP") || !strcmp(types[type].name, "OPTI"))
return raw_data[OUTPUT_FREQUENCY];
return raw_data[OUTPUT_FREQUENCY] ?
1.0 / (types[type].freq[0] *
raw_data[OUTPUT_FREQUENCY] +
types[type].freq[1]) : 0;
}
static float load_level(void)
{
unsigned int statINV,model,voltage;
int load425[]={99,88,84,80,84,84,84,86,86,81,76};
int load525[]={127,113,106,100,106,106,106,109,109,103,97};
int load625[]={131,115,107,103,107,107,107,110,110,105,99};
int load2k[] ={94,94,94,94,94,94,94,120,120,115,110};
int load425i[]={60,54,51,48,51,51,51,53,53,50,48};
int load525i[]={81,72,67,62,67,67,67,65,65,62,59};
int load625i[]={79,70,67,64,67,67,67,65,65,61,58};
int load2ki[] ={84,77,74,70,74,74,74,77,77,74,70};
int load400[]={1,1,1,1,1,1,1,1,88,83,87};
int load500[]={1,1,1,1,1,1,1,1,108,103,98};
int load600[]={1,1,1,1,1,1,1,1,128,123,118};
int load400i[]={1,1,1,1,1,1,1,1,54,52,49};
int load500i[]={1,1,1,1,1,1,1,1,66,64,61};
int load600i[]={1,1,1,1,1,1,1,1,86,84,81};
int load801i[]={1,1,1,1,1,1,1,1,44,42,40};
int load1000i[]={1,1,1,1,1,1,1,1,56,54,52};
int load1200i[]={1,1,1,1,1,1,1,1,76,74,72};
if ( !strcmp(types[type].name, "BNT") && raw_data[MODELNUMBER]%16 > 7 ) {
statINV=raw_data[STATUS_A] & ONLINE;
voltage=raw_data[MODELNUMBER]%16;
model=BNTmodels[raw_data[MODELNUMBER]/16];
if (statINV==0){
if (model==400 || model==801)
return raw_data[UPS_LOAD]*110.0/load400[voltage];
else if (model==600 || model==1200)
return raw_data[UPS_LOAD]*110.0/load600[voltage];
else
return raw_data[UPS_LOAD]*110.0/load500[voltage];
} else {
switch (model) {
case 400: return raw_data[UPS_LOAD]*110.0/load400i[voltage];
case 500:
case 800: return raw_data[UPS_LOAD]*110.0/load500i[voltage];
case 600: return raw_data[UPS_LOAD]*110.0/load600i[voltage];
case 801: return raw_data[UPS_LOAD]*110.0/load801i[voltage];
case 1200: return raw_data[UPS_LOAD]*110.0/load1200i[voltage];
case 1000:
case 1500:
case 2000: return raw_data[UPS_LOAD]*110.0/load1000i[voltage];
}
}
} else if (!strcmp(types[type].name, "KIN")) {
statINV=raw_data[STATUS_A] & ONLINE;
voltage=raw_data[MODELNUMBER]%16;
model=KINmodels[raw_data[MODELNUMBER]/16];
if (statINV==0){
if (model==425) return raw_data[UPS_LOAD]*110.0/load425[voltage];
if (model==525) return raw_data[UPS_LOAD]*110.0/load525[voltage];
if (model==625) return raw_data[UPS_LOAD]*110.0/load625[voltage];
if (model<2000) return raw_data[UPS_LOAD]*1.13;
return raw_data[UPS_LOAD]*110.0/load2k[voltage];
} else {
if (model==425) return raw_data[UPS_LOAD]*110.0/load425i[voltage];
if (model==525) return raw_data[UPS_LOAD]*110.0/load525i[voltage];
if (model==625) return raw_data[UPS_LOAD]*110.0/load625i[voltage];
if (model<2000) return raw_data[UPS_LOAD]*1.66;
return raw_data[UPS_LOAD]*110.0/load2ki[voltage];
}
} else if ( !strcmp(types[type].name, "IMP") || !strcmp(types[type].name, "OPTI")) {
return raw_data[UPS_LOAD];
}
return (raw_data[STATUS_A] & MAINS_FAILURE) ?
types[type].loadpct[0] * raw_data[UPS_LOAD] +
types[type].loadpct[1] :
types[type].loadpct[2] * raw_data[UPS_LOAD] +
types[type].loadpct[3];
}
static float batt_level(void)
{
int bat0,bat29,bat100;
unsigned int model;
float battval;
if ( !strcmp(types[type].name, "BNT") ) {
bat0=157;
bat29=165;
bat100=193;
battval=(raw_data[UPS_LOAD])/4+raw_data[BATTERY_CHARGE];
if (battval<=bat0)
return 0.0;
if (battval<=bat29)
return (battval-bat0)*30.0/(bat29-bat0);
if (battval<=bat100)
return 30.0+(battval-bat29)*70.0/(bat100-bat29);
return 100.0;
}
if ( !strcmp(types[type].name, "KIN")) {
model=KINmodels[raw_data[MODELNUMBER]/16];
if (model>=800 && model<=2000){
battval=(raw_data[BATTERY_CHARGE]-165.0)*2.6;
if (raw_data[STATUS_A] & ONLINE)
return battval+raw_data[UPS_LOAD];
if (battval>7)
return battval-6;
return battval;
} else if (model<=625){
battval=raw_data[UPS_LOAD]/4.0+raw_data[BATTERY_CHARGE];
bat0=169;
bat29=176;
bat100=204;
} else {
battval=raw_data[UPS_LOAD]/4.0-raw_data[UPS_LOAD]/32.0+raw_data[BATTERY_CHARGE];
bat0=175;
bat29=182;
bat100=209;
}
if (battval<=bat0)
return 0;
if (battval>bat0 && battval<=bat29)
return (battval-bat0)*30.0/(bat29-bat0);
if (battval>bat29 && battval<=bat100)
return 30.0+(battval-bat29)*70.0/(bat100-bat29);
return 100;
}
if ( !strcmp(types[type].name, "IMP") || !strcmp(types[type].name, "OPTI"))
return raw_data[BATTERY_CHARGE];
return (raw_data[STATUS_A] & ONLINE) ? /* Are we on battery power? */
/* Yes */
types[type].battpct[0] * raw_data[BATTERY_CHARGE] +
types[type].battpct[1] * load_level() + types[type].battpct[2] :
/* No */
types[type].battpct[3] * raw_data[BATTERY_CHARGE] +
types[type].battpct[4];
}
/*
* global used functions
*/
/* update information */
void upsdrv_updateinfo(void)
{
char val[32];
if (!ups_getinfo()){
return;
}
/* input.frequency */
upsdebugx(3, "input.frequency (raw data): [raw: %u]",
raw_data[INPUT_FREQUENCY]);
dstate_setinfo("input.frequency", "%02.2f", input_freq());
upsdebugx(2, "input.frequency: %s", dstate_getinfo("input.frequency"));
/* output.frequency */
upsdebugx(3, "output.frequency (raw data): [raw: %u]",
raw_data[OUTPUT_FREQUENCY]);
dstate_setinfo("output.frequency", "%02.2f", output_freq());
upsdebugx(2, "output.frequency: %s", dstate_getinfo("output.frequency"));
/* ups.load */
upsdebugx(3, "ups.load (raw data): [raw: %u]",
raw_data[UPS_LOAD]);
dstate_setinfo("ups.load", "%03.1f", load_level());
upsdebugx(2, "ups.load: %s", dstate_getinfo("ups.load"));
/* battery.charge */
upsdebugx(3, "battery.charge (raw data): [raw: %u]",
raw_data[BATTERY_CHARGE]);
dstate_setinfo("battery.charge", "%03.1f", batt_level());
upsdebugx(2, "battery.charge: %s", dstate_getinfo("battery.charge"));
/* input.voltage */
upsdebugx(3, "input.voltage (raw data): [raw: %u]",
raw_data[INPUT_VOLTAGE]);
dstate_setinfo("input.voltage", "%03.1f",input_voltage());
upsdebugx(2, "input.voltage: %s", dstate_getinfo("input.voltage"));
/* output.voltage */
upsdebugx(3, "output.voltage (raw data): [raw: %u]",
raw_data[OUTPUT_VOLTAGE]);
dstate_setinfo("output.voltage", "%03.1f",output_voltage());
upsdebugx(2, "output.voltage: %s", dstate_getinfo("output.voltage"));
status_init();
*val = 0;
if (!(raw_data[STATUS_A] & MAINS_FAILURE)) {
!(raw_data[STATUS_A] & OFF) ?
status_set("OL") : status_set("OFF");
} else {
status_set("OB");
}
if (raw_data[STATUS_A] & LOW_BAT) status_set("LB");
if (raw_data[STATUS_A] & AVR_ON) {
input_voltage() < linevoltage ?
status_set("BOOST") : status_set("TRIM");
}
if (raw_data[STATUS_A] & OVERLOAD) status_set("OVER");
if (raw_data[STATUS_B] & BAD_BAT) status_set("RB");
if (raw_data[STATUS_B] & TEST) status_set("TEST");
status_commit();
upsdebugx(2, "STATUS: %s", dstate_getinfo("ups.status"));
dstate_dataok();
}
/* shutdown UPS */
void upsdrv_shutdown(void)
__attribute__((noreturn));
void upsdrv_shutdown(void)
{
/* power down the attached load immediately */
printf("Forced UPS shutdown (and wait for power)...\n");
shutdown_ret();
}
/* initialize UPS */
void upsdrv_initups(void)
{
int tmp;
unsigned int model = 0;
unsigned int i;
static char buf[20];
/* check manufacturer name from arguments */
if (testvar("manufacturer"))
manufacturer = getval("manufacturer");
/* check model name from arguments */
if (testvar("modelname"))
modelname = getval("modelname");
/* check serial number from arguments */
if (testvar("serialnumber"))
serialnumber = getval("serialnumber");
/* get and check type */
if (testvar("type")) {
for (i = 0;
i < NUM_OF_SUBTYPES && strcmp(types[i].name, getval("type"));
i++) ;
if (i >= NUM_OF_SUBTYPES) {
printf("Given UPS type '%s' isn't valid!\n", getval("type"));
exit (1);
}
type = i;
}
/* check line voltage from arguments */
if (testvar("linevoltage")) {
tmp = atoi(getval("linevoltage"));
if (! ( (tmp >= 200 && tmp <= 240) || (tmp >= 100 && tmp <= 120) ) ) {
printf("Given line voltage '%d' is out of range (100-120 or 200-240 V)\n", tmp);
exit (1);
}
linevoltage = (unsigned int) tmp;
}
if (testvar("numOfBytesFromUPS")) {
tmp = atoi(getval("numOfBytesFromUPS"));
if (! (tmp > 0 && tmp <= MAX_NUM_OF_BYTES_FROM_UPS) ) {
printf("Given numOfBytesFromUPS '%d' is out of range (1 to %d)\n",
tmp, MAX_NUM_OF_BYTES_FROM_UPS);
exit (1);
}
types[type].num_of_bytes_from_ups = (unsigned char) tmp;
}
if (testvar("methodOfFlowControl")) {
for (i = 0;
i < NUM_OF_SUBTYPES &&
strcmp(types[i].flowControl.name,
getval("methodOfFlowControl"));
i++) ;
if (i >= NUM_OF_SUBTYPES) {
printf("Given methodOfFlowControl '%s' isn't valid!\n",
getval("methodOfFlowControl"));
exit (1);
}
types[type].flowControl = types[i].flowControl;
}
if (testvar("validationSequence") &&
sscanf(getval("validationSequence"),
"{{%u,%x},{%u,%x},{%u,%x}}",
&types[type].validation[0].index_of_byte,
&types[type].validation[0].required_value,
&types[type].validation[1].index_of_byte,
&types[type].validation[1].required_value,
&types[type].validation[2].index_of_byte,
&types[type].validation[2].required_value
) < 6
) {
printf("Given validationSequence '%s' isn't valid!\n",
getval("validationSequence"));
exit (1);
}
/* NOTE: %hhu is not supported before C99; that would need reading
* arguments into an uint as %u, checking range and casting */
if (testvar("shutdownArguments") &&
sscanf(getval("shutdownArguments"), "{{%hhu,%hhu},%c}",
&types[type].shutdown_arguments.delay[0],
&types[type].shutdown_arguments.delay[1],
&types[type].shutdown_arguments.minutesShouldBeUsed
) < 3
) {
printf("Given shutdownArguments '%s' isn't valid!\n",
getval("shutdownArguments"));
exit (1);
}
if (testvar("frequency") &&
sscanf(getval("frequency"), "{%f,%f}",
&types[type].freq[0], &types[type].freq[1]
) < 2
) {
printf("Given frequency '%s' isn't valid!\n",
getval("frequency"));
exit (1);
}
if (testvar("loadPercentage") &&
sscanf(getval("loadPercentage"), "{%f,%f,%f,%f}",
&types[type].loadpct[0], &types[type].loadpct[1],
&types[type].loadpct[2], &types[type].loadpct[3]
) < 4
) {
printf("Given loadPercentage '%s' isn't valid!\n",
getval("loadPercentage"));
exit (1);
}
if (testvar("batteryPercentage") &&
sscanf(getval("batteryPercentage"), "{%f,%f,%f,%f,%f}",
&types[type].battpct[0], &types[type].battpct[1],
&types[type].battpct[2], &types[type].battpct[3],
&types[type].battpct[4]
) < 5
) {
printf("Given batteryPercentage '%s' isn't valid!\n",
getval("batteryPercentage"));
exit (1);
}
if (testvar("voltage") &&
sscanf(getval("voltage"), "{%f,%f,%f,%f}",
&types[type].voltage[0], &types[type].voltage[1],
&types[type].voltage[2], &types[type].voltage[3]
) < 4
) {
printf("Given voltage '%s' isn't valid!\n", getval("voltage"));
exit (1);
}
/* open serial port */
upsfd = ser_open(device_path);
ser_set_speed(upsfd, device_path, B1200);
/* setup flow control */
types[type].flowControl.setup_flow_control();
/* Setup Model and LineVoltage */
if (!strncmp(types[type].name, "BNT",3) || !strcmp(types[type].name, "KIN") || !strcmp(types[type].name, "IMP") || !strcmp(types[type].name, "OPTI")) {
if (!ups_getinfo()) return;
/* Give "BNT-other" a chance! */
if (raw_data[MODELNAME]==0x42 || raw_data[MODELNAME]==0x4B || raw_data[MODELNAME]==0x4F){
/* Give "IMP" a chance also! */
if (raw_data[UPSVERSION]==0xFF){
types[type].name="IMP";
model=IMPmodels[raw_data[MODELNUMBER]/16];
}
else {
model=BNTmodels[raw_data[MODELNUMBER]/16];
if (!strcmp(types[type].name, "BNT-other"))
types[type].name="BNT-other";
else if (raw_data[MODELNAME]==0x42)
types[type].name="BNT";
else if (raw_data[MODELNAME]==0x4B){
types[type].name="KIN";
model=KINmodels[raw_data[MODELNUMBER]/16];
} else if (raw_data[MODELNAME]==0x4F){
types[type].name="OPTI";
model=OPTImodels[raw_data[MODELNUMBER]/16];
}
}
}
else if (raw_data[UPSVERSION]==0xFF){
types[type].name="IMP";
model=IMPmodels[raw_data[MODELNUMBER]/16];
}
linevoltage=voltages[raw_data[MODELNUMBER]%16];
if (!strcmp(types[type].name, "OPTI")) {
snprintf(buf,sizeof(buf),"%s-%u",types[type].name, model);
} else {
snprintf(buf,sizeof(buf),"%s-%uAP",types[type].name, model);
}
if (!strcmp(modelname, "Unknown"))
modelname=buf;
upsdebugx(1,"Detected: %s , %dV",buf,linevoltage);
if (testvar("nobt") || dstate_getinfo("driver.flag.nobt")) {
upslogx(LOG_NOTICE, "nobt flag set, skipping battery test as requested");
}
else {
upslogx(LOG_NOTICE, "nobt flag not set, performing battery test as requested");
if (ser_send_char (upsfd, BATTERY_TEST) != 1) {
upslogx(LOG_NOTICE, "Write error: failed to send battery test command to UPS!");
dstate_datastale();
return;
}
}
}
upsdebugx(1, "Values of arguments:");
upsdebugx(1, " manufacturer : '%s'", manufacturer);
upsdebugx(1, " model name : '%s'", modelname);
upsdebugx(1, " serial number : '%s'", serialnumber);
upsdebugx(1, " line voltage : '%u'", linevoltage);
upsdebugx(1, " type : '%s'", types[type].name);
upsdebugx(1, " number of bytes from UPS: '%u'",
types[type].num_of_bytes_from_ups);
upsdebugx(1, " method of flow control : '%s'",
types[type].flowControl.name);
upsdebugx(1, " validation sequence: '{{%u,%#x},{%u,%#x},{%u,%#x}}'",
types[type].validation[0].index_of_byte,
types[type].validation[0].required_value,
types[type].validation[1].index_of_byte,
types[type].validation[1].required_value,
types[type].validation[2].index_of_byte,
types[type].validation[2].required_value);
upsdebugx(1, " shutdown arguments: '{{%u,%u},%c}'",
types[type].shutdown_arguments.delay[0],
types[type].shutdown_arguments.delay[1],
types[type].shutdown_arguments.minutesShouldBeUsed);
if ( strcmp(types[type].name, "KIN") && strcmp(types[type].name, "BNT") && strcmp(types[type].name, "IMP")) {
upsdebugx(1, " frequency calculation coefficients: '{%f,%f}'",
types[type].freq[0], types[type].freq[1]);
upsdebugx(1, " load percentage calculation coefficients: "
"'{%f,%f,%f,%f}'",
types[type].loadpct[0], types[type].loadpct[1],
types[type].loadpct[2], types[type].loadpct[3]);
upsdebugx(1, " battery percentage calculation coefficients: "
"'{%f,%f,%f,%f,%f}'",
types[type].battpct[0], types[type].battpct[1],
types[type].battpct[2], types[type].battpct[3],
types[type].battpct[4]);
upsdebugx(1, " voltage calculation coefficients: '{%f,%f}'",
types[type].voltage[2], types[type].voltage[3]);
}
}
/* display help */
void upsdrv_help(void)
{
/* 1 2 3 4 5 6 7 8 */
/* 12345678901234567890123456789012345678901234567890123456789012345678901234567890 MAX */
printf("\n");
printf("Specify UPS information in the ups.conf file.\n");
printf(" type: Type of UPS: 'Trust','Egys','KP625AP','IMP','KIN','BNT',\n");
printf(" 'BNT-other', 'OPTI' (default: 'Trust')\n");
printf(" 'BNT-other' is a special type intended for BNT 100-120V models,\n");
printf(" but can be used to override ALL models.\n");
printf("You can additional specify these variables:\n");
printf(" manufacturer: Manufacturer name (default: 'PowerCom')\n");
printf(" modelname: Model name (default: 'Unknown' or autodetected)\n");
printf(" serialnumber: Serial number (default: Unknown)\n");
printf(" shutdownArguments: 3 delay arguments for the shutdown operation:\n");
printf(" {{Minutes,Seconds},UseMinutes?}\n");
printf(" where Minutes and Seconds are integer, UseMinutes? is either\n");
printf(" 'y' or 'n'.\n");
printf("You can specify these variables if not automagically detected for types\n");
printf(" 'IMP','KIN','BNT'\n");
printf(" linevoltage: Line voltage: 110-120 or 220-240 (default: 230)\n");
printf(" numOfBytesFromUPS: Number of bytes in a UPS frame: 16 is common, 11 for 'Trust'\n");
printf(" methodOfFlowControl: Flow control method for UPS:\n");
printf(" 'dtr0rts1', 'dtr1' or 'no_flow_control'\n");
printf(" validationSequence: 3 pairs of validation values: {{I,V},{I,V},{I,V}}\n");
printf(" where I is the index into BytesFromUPS (see numOfBytesFromUPS)\n");
printf(" and V is the value for the ByteIndex to match.\n");
printf(" frequency: Input & Output Frequency conversion values: {A, B}\n");
printf(" used in function: 1/(A*x+B)\n");
printf(" If the raw value x IS the frequency, then A=1/(x^2), B=0\n");
printf(" loadPercentage: Load conversion values for Battery and Line load: {BA,BB,LA,LB}\n");
printf(" used in function: A*x+B\n");
printf(" If the raw value x IS the Load Percent, then A=1, B=0\n");
printf(" batteryPercentage: Battery conversion values for Battery and Line power:\n");
printf(" {A,B,C,D,E}\n");
printf(" used in functions: (Battery) A*x+B*y+C, (Line) D*x+E\n");
printf(" If the raw value x IS the Battery Percent, then\n");
printf(" A=1, B=0, C=0, D=1, E=0\n");
printf(" voltage: Voltage conversion values for 240 and 120 voltage:\n");
printf(" {240A,240B,120A,120B}\n");
printf(" used in function: A*x+B\n");
printf(" If the raw value x IS HALF the Voltage, then A=2, B=0\n");
printf(" nobt: Flag to skip battery check on init/startup.\n\n");
printf("Example for BNT1500AP in ups.conf:\n");
printf("[BNT1500AP]\n");
printf(" driver = powercom\n");
printf(" port = /dev/ttyS0\n");
printf(" desc = \"PowerCom BNT 1500 AP\"\n");
printf(" manufacturer = PowerCom\n");
printf(" modelname = BNT1500AP\n");
printf(" serialnumber = 13245678900\n");
printf(" type = BNT-other\n");
printf("# linevoltage = 120\n");
printf("# numOfBytesFromUPS = 16\n");
printf("# methodOfFlowControl = no_flow_control\n");
printf("# validationSequence = {{8,0},{8,0},{8,0}}\n");
printf("# shutdownArguments = {{1,30},y}\n");
printf("# frequency = {0.00027778,0.0000}\n");
printf("# loadPercentage = {1.0000,0.0,1.0000,0.0}\n");
printf("# batteryPercentage = {1.0000,0.0000,0.0000,1.0000,0.0000}\n");
printf("# voltage = {2.0000,0.0000,2.0000,0.0000}\n");
printf(" nobt\n");
return;
}
/* initialize information */
void upsdrv_initinfo(void)
{
/* write constant data for this model */
dstate_setinfo ("ups.mfr", "%s", manufacturer);
dstate_setinfo ("ups.model", "%s", modelname);
dstate_setinfo ("ups.serial", "%s", serialnumber);
dstate_setinfo ("ups.model.type", "%s", types[type].name);
dstate_setinfo ("input.voltage.nominal", "%u", linevoltage);
/* now add the instant commands */
dstate_addcmd ("test.battery.start");
dstate_addcmd ("shutdown.return");
dstate_addcmd ("shutdown.stayoff");
upsh.instcmd = instcmd;
}
/* define possible arguments */
void upsdrv_makevartable(void)
{
/* 1 2 3 4 5 6 7 8 */
/*2345678901234567890123456789012345678901234567890123456789012345678901234567890 MAX */
addvar(VAR_VALUE, "type",
"Type of UPS: 'Trust','Egys','KP625AP','IMP','KIN','BNT','BNT-other','OPTI'\n"
" (default: 'Trust')");
addvar(VAR_VALUE, "manufacturer",
"Manufacturer name (default: 'PowerCom')");
addvar(VAR_VALUE, "modelname",
"Model name [cannot be detected] (default: Unknown)");
addvar(VAR_VALUE, "serialnumber",
"Serial number [cannot be detected] (default: Unknown)");
addvar(VAR_VALUE, "shutdownArguments",
"Delay values for shutdown: Minutes, Seconds, UseMinutes?'y'or'n'");
addvar(VAR_VALUE, "linevoltage",
"Line voltage 110-120 or 220-240 V (default: 230)");
addvar(VAR_VALUE, "numOfBytesFromUPS",
"The number of bytes in a UPS frame");
addvar(VAR_VALUE, "methodOfFlowControl",
"Flow control method for UPS: 'dtr0rts1' or 'no_flow_control'");
addvar(VAR_VALUE, "validationSequence",
"Validation values: ByteIndex, ByteValue x 3");
if ( strcmp(types[type].name, "KIN") && strcmp(types[type].name, "BNT") && strcmp(types[type].name, "IMP")) {
addvar(VAR_VALUE, "frequency",
"Frequency conversion values: FreqFactor, FreqConst");
addvar(VAR_VALUE, "loadPercentage",
"Load conversion values: OffFactor, OffConst, OnFactor, OnConst");
addvar(VAR_VALUE, "batteryPercentage",
"Battery conversion values: OffFactor, LoadFactor, OffConst, OnFactor, OnConst");
addvar(VAR_VALUE, "voltage",
"Voltage conversion values: 240VFactor, 240VConst, 120VFactor, 120VConst");
addvar(VAR_FLAG, "nobt",
"Disable battery test at driver init/startup");
}
}
void upsdrv_cleanup(void)
{
ser_close(upsfd, device_path);
}